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high hardware cost is to use an associative memory which is smaller

than the data base, and process the data by pages. By using a smaller

memory the har-iware costs are thus reduced. Some operations can

be performed quite efficiently on an associative memory smaller than

the data base, (Fractional-Size Associative Menory) while others cannot.

In this report a class of operations which are performed efficiently on

a Fractional-Size Associative Memory is defined.

I
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In the study and design of large scale systems, problems of

data management and data processing are often encountered. One

area of such problems concerns the selection of efficient hardware

for a system, given that a known set of operations are to be per-

formed on the selected hardware. This is, of course, one of the

primary goals of a systems designer. In order to select the proper

hardware for a system, however, a designer must know for which

type of operations each hardware component is best suited. In this

report the problem of determining the suitability of operations is

considered for the particular case of associative memories.

In the period of time since associative memories were first

designed and built, numerous studies [e. g., 1-7] have been made to

determine which operations are well suited to their use. Although

these studies have shown associative memories to be powerful and

versatile, the application of associative memories has been quite

limited, due to their high cost. Since the cost of these memories is

proportional to the number of bits, it is logical to use as small a

memory as will provide adequate performance. The issue is, there-

fore, to determine how small a memory can be used and still obtain

satisfactory performance. Intuitively, it seems clear that the size

memory required would depend on the operation to be performed

and the size of the data base. In particular, one operation might

1
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perform well on a memory which is smaller than the data base, while

a second operation might perform very poorly under these conditions.

It would therefore be advantageous to know what are the characteristics

of the first operation which allow it to perform well in a situation which

is totally unsuited for the second operation. This is the issue which

is discussed in ihe remainder of this report.

The goal here will be to determine which operations are well

suited to an associative memory which can hold only some fraction

of the data base required for those operations. The reason for this

is quite simple. In many instances the cost of an associative memory

which is large enough to contain the entire data base is prohibitively

high. If, however, an associative memory, which can hold some

fraction, a, of this dato base, can be employed without paying too

high a cost in increase(- processing time, then the capabilities of the

associative memory may be available within the price range of the

user. (In the next section an example will further clarify this idea.)

As will be shown later in this report, certain operations are suitable

to such a reduced associative memory size while others are not. To

determine which operations are suitable the following steps are taken

in this report.

First, the concept of associative memory is briefly reviewed and

the assumptions concerning the data processing environment, which are

the basis of the analysis in this report, are presented. Second, a

precise meaning is given to the term "operation", as used in this
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report. Next, a definition of what is meant by an operation being

suitable for a full-size associative memory is presented- With this

definition as a basis, the characterization of operations suitable for

associative memories which must process data bases larger than

themselves (Fractional-Size Associative Memory) is begun. One

conclusion reached L 'Lht the basic associative search capabilities

(instructions) of an associative memory must fit the characterization

chosen. The final characterization is formalized as the definition of

a class of operations which are suitable for Fractional-Size Associative

Memories. Finally, examples of members of this class are discussed.

1. 1 Motivational Example

In this section a situation is examined in which a Fractional-Size

Associative Memory can be used efficiently. For the sake of brevity

and clarity the example will be kept as simple as possible.

The situation is the following. A large data base is frequently

queried as to the contents of that data base. To answer these queries

a computer is used. However, the data base is so large that a random

access memory large enough to store the entire data base is too

expensive. Also, other demands made upon the computing system

would force the data base to be remove i from cnre periodically. It

has been determined that the computer system, with only the random

accer s capability of a conventional memory, could not keep up with
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the demands on the system. The queries to the data base are of the

type that an associative mema.Ty resolves quite efficiently. For

instance, a typical query would be to find all words in the data bas(

whose values lie within a given range of values. A full size asso-

ciative memory can simultaneously, for all data in the memory,

1
ascertain which data meet this condition . With a random access

mem, ry only one word may be checked at a time. Since the queries

are suitable for the associative memory the queries could easily be

processed if the memory were large enough to 1'ld the entire data.

This cannot be done since the cost would be far too great, much

greater than for the same size conventional memory. To summarize,

the situation is as depicted in Figure 1. Time and cost2 constraints

are present as indicated by the horizontal and vertical dotted lines,

respectively. (The size of the data base is assuraed to be fixed.)

The crosshatched area indicates the region in which the system must

operate in order that its pr:ormance be acceptable. The circled

dots indicate the time-cost coordinates of the associative and con-

ventional memories which are large enough to hold the entire data

See Appendix A for an example of how this query could be
resolved by an associative memory.

2 Although cost is a criterion in this example it is not used in
the more general problem of interest in the remainder of this report.
Reasons for this are discussed in Section 4.
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base. The conventional memory meets neither of the two constraints,

while the associative memory meets only the time constraint.

Since the associative memory does meet the time constraint,

one way of solving this problem is to reduce the cost of the asso-

ciative memory to an acceptable level by reducing its size. If this

smaller associative memory, which meets the cost constraint, can

still meet the time constraint, then a solution has been found. To

show that this can be done in some instances, Appendix A includes

programs which implement the example operation described above,

ui;iag a conventional memory and an associative memory. These are

analyzed to determine how much time the associative memory will

require to perform the operation, as a function of the memory size.

The results are presented in Figure 2. As can be seen there is,

indeed, a range of sizes for the associative memory such that both

constraints are met, as evidenced by the part of the curve which

passes through the cross-hatched area. Thus, for the operation

described above, it is clear that a Fractional-Size Associative

Memory can be used efficiently. Indeed, it constitutes the only

solution to the problem, as presented.

This example leads into the question of how to determine when

Fractional-Size Associative Memories can be ased efficiently. For

some operations such a memory can be used efficiently while for
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others ft cannot. For example, ordering a list on some parameter

is somewhat awkward nn a smaller memcy, i. e. , one which cannot

I hold all the data. For this reason it would be desirable to know what

charactcristics can guarantee that ý: given operation is suitable for

a Fractional-Size Associative Memory. To attack the problem of

finding these characteristics some groundwork must be prepared.

In particular, precise notions of suitability and operation must be

defined, and the problem to be discussed must be posed in much

more specific terms. In the next sections this groundwork is corn-

* p!eted. This includes a review of the concept of an associative

memory so as to avoid possible confusion on the part of the reader

when specific terms are used.

*

I

I
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2.0 The Associative Memory System and Environment

2.1 The Basic Associative Memory

Since tho rest of this report will presume a certain'familiarity

with associative memories a brie; :.view of the basic structure of an

associative memory will now be presented.

In brief, any memory which has the capability to retrieve data

by contents may be termed as associative memory. Technicaliy, the

term content-addressable is a more apt description of this type of

memory, but the term associative memdry seem;, tu be commonly

accepted and will be used throughout this report.

The configuration which is usually considered minimal, in terms

of hardware, for an associative memory is shown in Figure 3. It consists

of a collection of storage elements which are grouped into logical units

known as memory registers. These registers may be subdivided into

fields. Also required are three types of registers known as comparand

register(s), mask register(s), and response register(s). These four

component types, along with control logic, allow the basic function of

content addressabllity to be performed. Ns an example of how these

components are used, suppose it is desired to determine which words1

have Field A equal to 100. The procedure would be first, set Field k

of the mask register to its "ON" condition (all other Fields are "OFF")

1The unit of information held by one memory register is known
as a word.



10

i* L

f F-

II

II

r -r - -I

S~LI1  .iI. IJI_ ....

Re fe;-Aso~eix6

{A



to indicate a search is to be performed on Field A, only. Next, the

value 100 is placed in Field A of the comparand register to signify

A the value to be searched for. Then, the "EX ACT MATCH" search

instruction is executed and, afterwards, the response iegister indicates

f- those words which meet the search criterion.

2.2 Capabilities of Associative Memories

Even though a memory system with the capability described

above is a very powerful device, other capabilities are generally added

as well. Typical capabilities are the following [ 1,5].

1. EX A-CT MATCH - finds all words for which the bits indicated

by the mask match the corresponding bits L- the cemparand

2. MAX - finds the location of the maximum value in memory

for those bits indicated by mask register

3. MIN - analogous to MAX

4. LESS THAN - finds all words for which the bits indicated

by the mask have value less than the value of the

corresponding bits in the comparand

5. GREATER THAN- analogous to LESS THAN

6. LESS THAN OR EQUAL - same as LESS THAN but

indicates words with equal value as well

7. GREATER-THAN-OR-EQUAL - analogous to LESS THAN

OR EQUAL



8. NEXT-HIGHER-THAN - finds word(s) having the smallest

value of indicated bits which is greater than the value

of those bits in the comparand

9. NEXT-LOWER-THAN - analogous to NEXT HIGHER THAN

10. BETWEEN COMPARANDS - finds those words for which the

value of the indicated bits is between the values of the

corresponding bits of two comparands (This operation

requires two coniparsud registers)

2.3 The Associative Memory System Model

A great deal of variation exists among present and proposed

associative memory systems in terms of hardware available, instruction

set, and the configuration of the memory system. Therefore, it is

appropriate at this point to present the memory configuration and the

instruction set upon which the remainder of this report will be based,

The memory configuration is depicted in Figure 4. The arrc'ws

between the various components indicate p-aths of data flow. The data

is passed among the memory levels by high speed, dedicated channels.

All data transfers, including those to and from the associative registers,

are parallel-by-bit, serial-by-word transfers. The buffer memory is

present to mask latency delays characteristic of disk, drum, and other

bulk storage. The goal is to anticipate requests for data by the asso-

ciative memory and have that data waiting in the buffer whei it is needed.

The size of the buffer will not be discussed, but it will be assumed that
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the buffer is larger than the associative memory. The dotted channel

arrows going to the left indicate a data path to oLh'er components of the

computer system. These may include conve'ationai memory, I/O units,

or other registers. T1 -,s- will be of no concern, except where specifically

mentioned later on. No particular length will be assumed for the asso-

ciative registers or the associative memory registers, except in specific

examples. It will be assumed, unless otherwise noted, that the response

register contains one bit for each word in the associative memory.

The instruction set u.f the associative memory will include five

basic search commands, plus commands to move data to and t rom the

associative memory, plus other "housekeeping" instructions.

The search instructions are the following

1. EXACT MATCH

2. MAX

3. MIN

4. LESS THAN

5. GREATER THAN

For each of these five instructions the words which do not satisfy the

search criteria are indicated at the completion of the instruction by the

correspondence bit of the response register being set to zero. The bits

corresponding to words which meet the search criterion are left

unchanged. Other instructions which are assumed to be part of the

instruction set are the following.
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1. LOAD - causes the specified register to be loaded from

the specified location (thE register and the location are

parameters of the instruction).

2. SET RESPOF .• - causes response register to be set to

all ones or all zeros, whiche-er is specified.

3. COMPLEMENT RESPONSE - cau~es each bit of response

register to be complemented.

4. COUNT RESPONDERS - causes a count of the number of

bits set to zero in the response register to be taken.

5. MOVE RESPONSE - causes those words for which the

corresponding bits in the response register are zero

to be written into the buffer memory or into some other

specified place.

6. WRITE RESPONSE - causes a specified symbol to be

written into tne set of bits designated by the mark register,

for all locations indicated by the response register.

7. LOAD RESPONSE - causes those locations indicated by

response register to be loaded from specified region.

For an operative system other instructions would be required,

in addition to the seven listed above. These instruct-?, are presented

only to give some insight to the range of capabilities which is assumed

for the associative memory system in the remainder of this report.

They are not meant to be an exhaustive list.
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One bit of notation which will be used thioughout the remainder

of this report is the symbol "a". This symbol will designate the size

of the associative nwmory relative to the size of the data base to be

processed (i. e., 0 < a < 1). For example, if the data base has 10, 000

words and the associative memory can hold 100 words, then

a = 100 01. This is the reason for the term Fractional-Size10, 00 0

Associative Mt. mory.

3.0 Operations

Up to this point the term "operation" has been used on an intuitive

basis. The discussion in this section will provide a more precise

definition of the term in the context of this report.

An operation is an abstract concept Which is similar to the concept

of "goal". That is, an operation is a specification of a desired end

result with no specification of the manner in which the resuit is to be

achieved. For example, "Find the maximum value of field A", is an

operation. The actual achievement of the goal, i.e. finding the maximum

value of field A, can be accomplishea in various manners. More formally,

an operation may be thought of as a mapping which maps data into

output.

Structurally these operations may be viewed as having been

generated by a set of primi' ve, or tCypie,4, operations. For any given

system this set of typieal operations corresponds to the instruction set

of that system. Operation.s not included in these typical operations may
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be constructed by building an appropriate sequence of the typical operations.

For example, suppose the instruction set for some systei' -omsisted of

the two groups of instructions discussed in Section 2.3, and that it is

desired to perform the following operation. "Of those words which have

(Field A) < 100 and (Field B) > 10, find those words for which (Field C) = 1."

This operation is not a member of the typical set of operations but it

could be constructed from the following sequence. (It is assumed, for

simplicity, that the data has already been loaded.)

1. LOAD ComparandI - loads test values into Fields A, B, and C.

2. LOAD Mask - sets Field k to "on" state, other fields to "off".

3. Set Response - puts all l's in response sequence.

4. LESS THAN - finds words with (Field A) < 100 RESPONSE

bits for all others are set to zero.

5. LOAD Mabk - sets Field B to "on" state, others to "off".

6. GREATER THAN - response bits for all words having

(Fielc f) > 10 are set to zro.

7. LOAD Mask - set Field C to "on" state, others to "off".

8. EQUkL TO - after this operation response bits still set to

one indicate those words which meet all three criteria.

lIn practice, all LOAD '-'mmands would require a specification

of where to load from, but tW., "s a ut*t&il which is unimportant to the
discussion above.



18

4.0 Suitability of Operations for Fractional-Size associative Memories

The goal of this section is the development of the definition for

the Minimum Suitable Class of Operations. This definition will specify

sufficient conditions for an operation to be suitable for a Fractional-Size

ALsociafive Memory. In other words, the Minimum Suitable Class will

be a subclass of those operations which are suitable for the Fractional-

Size sseciadive Memory. The first step toward this goal will be to
define suitability.

4.1 Suitability

"The word "suitable" has, unfortunately, different intuitive meanings

to different people. To one person a-1 operation which is suitable for an

associative memory is one which can be performed by that type of memory.

To someone else it may mean that the operation can be performed within

a specified time using the associative memory. To another person it

may mean that the operation can be performed more rapidly, or more

cheaply, or both in an associative memory as compared to a conventional

memory. Here suitability of an operation for an associative memory

will be defined relative to time to perform that operation using a

conventional memory. The definition will say nothing about the cost of

the ,ssociative memory, for two reasons. First, the money available

to spend on an associative memory is normally a constraint peculiar

to each 'Iata processing system. Thus, an absolute bound on the cost

would be arbitrary and probably useless. Second, the ratio of the cost
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of an associative memory to the cost of a conventional memory depends

on the technologies used to build each of them. Therefore, constraining

the cost of an associative memory relative to the cost of a conventional

memory wou d likely prove to be of little value either.

The definition will characterize suitability in terms of full size

associative memories and full size conventional memories, i.e., memolies

which are large enough to hold the entire data base.

Definition Iin operation, f, is suitable for a full size
associative memory A, if, for any implementatiorn ,f f
on a conventional memory, C, an implementation of f
on A can be found which is faster.

In this definition an implementation is a program. The definition
says that f can be performed faster using A than is possible using C.

Note that this definition is for full size associative memories. It

should be clear to the reader that operations which are suitable under

this definition may, if implemented in a Fractional-Size Associative

Memory, require more processing time than if implemented in a

conventional memory. In general, this will depend upon the size of the

Fractional-Size Associative Memory and the nature of the operation.

Since the size the Fractional-Size Ussociative Memory is normally limited

by economic considerations only the nature of operations will be considered

here.

The goal, then, is to characterize the Minimum Suitable Class of

Operations as described above. The only question is where to start.
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One starting point is to consider what are the most essential, c: oasic,

capr*,'es of associative memories. Clearly, it is the associative

search capabilities, such as MAX, EXACT MATCH, etc. These are

the capabilities which distinguish associative from conventional memories.

Any class of operations which are to be suitable to a Fractional-Size

4ssociative Memory should contain these capabilities. For this reason,

the nature of these operations will be studied as the basis of the

characterization of the Minimum Suitable Class of Operations. Recall

that in Section 2.3 five associative operations were listed, and it was

stated that these give could be combined to implement the capabilities

of almost any other set of associative search instructions.

4.2 Characterization of the Basic Associative Operations

The five associative search operations listed in Section 2.3 are

repeated below for convenience.

1. EXACT MATCH

2. GREATER THAN

3. LESS THAN

4. MAX

5. MIN

The five operations corresponding to these instructions will

hereafter be referred to as the "basic associative operations". For

example, the operation corresponding to EX ACT MATCH is that mapping
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which maps the Input data set to those members of the input data which

match some predeternaned constant.

The firdt step in characterizing these operations will be to define

the range and domain of t!h mapoings. To do this some notation must

first be defined.

Notation

The basic object of interest is the single word, or datum.

Therefore, let

{n-bit words

wheren = 1, 2, o ..,.

Now the largest unit of information which will be of interest

is the data base. The set, g, of all data bases is defined as

= dId = (wl, . wk), k=1,2,..., andw eWn

where the word length n is assumed fixed.

Then the general form of the mapping of interest iL

f:

i.e., f maps k-tuples (data bases) to j-tuples.

Thus, we now have the set

of all mappings of b into itself. Sf contains the Minimum Suitable Class

of Operations. To determine the desired subset of Sf further restrictions

must be developed.
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Since suitability is Loncerned with the processing time of operations,
it seems logical that restrictions to Sf should reflect time in some senue.

To obtain the desired restrictions, therefore, it is necessary to determine

which chatracteristics of the five basic associative instrucUops make

them "more suitable", with respect to processing time, for a Frart1Usal-

Size Associative Memory.

'Processing time is composed of two parts, namely, data movement

time (e.g., loading and unloading of data) and execution time (i.e. , the

Uime required to execute instructions). In an associative memory the

time required to load or unload one datum is generally equivalent to

the time required to execute an assoriative search instruction, such as

MAX. Therefore, it is desirable to load and unload the data as few

times as is possible. In Appendix B it is shown that the basic associative

operations can be implemented on a Fractional-Size Associative Memory

without loading any datum more than once, i.e., no reloading of dat'a

is required. Thus, one restriction on the members of the Minimum

Suitable Class should be that they each have an implementation such

that only a single pass through the data is required to compute the

output. In the next section such a restriction is discussed in terms of

the familiar concept of causality.

The execution time required for some impiementationj, ofa

operation f is governed by two factors. First is the time required to

execute the implementation (or program) on the data in a given associative
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memory. Second is the numbers of times the must be repeated to

process the data base of interest. Thus, 'both of these quantities must

be bounded in some manner. In the preceeding paragraph it was pointed

out thatIP, should not require any data to be reloaded. However, no

constraints were placed on how many data could be retained in the memory

between applications of -. For instance, if P allows cnly one new datum

to be brought in between each application of tp, then it is, in some sense
f

"less suitable" than if it brought all new data in after each application.

In Appendix B it is demonstrated that all of the five basic associative

operations have implementations such that no more than one datum is

retained between each application of the respective implementations.

This characteristic of the five basic associative operations should also

be reflected in a re.-ýiction on the members of the Minimum Suitable

Class. This is also discussed in the next section.

In terms of execution time th4 important fact to be noticed about

the five basic assocl ive operations is the following. Each of these

five operations, f, has an implementation ) such that the executionf
time 2 of a single application of is. proportional to t

f R 'f cm
where t (o ) is the time to execute tP, which is the fastest

c Cm fcm
implementation of f using a conventional memory and M is the number of

In the sense that • would be applied more times in the first
f

instances tian in the second instance.

2See Appendix B
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registers in the associative memory. Again, this type of poocessing

time relationship is reflected in a constraint on the members of the

Minimum Suitable Class, which will be discussed below.

4.3 Formalization of Physical Constraints

In the previous section the characteristics of the basic associative

operations were discussed. In this section these characteristics will

be:used to develop the definition of the Minimum Suitable Class of

OperatiOns. The discussion will start at the hardware level and progress

tO the level of mappings.

In Figure 5 the hardware constraints discusset. previously are

represented. The associative memory consists of M words. M-1 words

of data are read into the memory, processed, and some results may be

printed out as M words or fewer. The input and output processes are

represented as one-way tapes to denote the no-reloading-of-data constraint.

The single word shown separated from the rest of the words

represents the capability of retaining one word of information to characterize

data previously processed. The one word of information may also be

referred to as the "state" of the computation. Since the word has n bits

the computation may be in any of 2 states at any given instance. Figure 5

illustrates a physical realization of the first two constraints discussed

earlier. Now it remains to characterize these constraints in terms of

the mapping f.

To begin the characterization of these constraints it is first noted

that the use of a Fractional-Size Associative Memory requires that the
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data base, de), must be processed in pages, p1 ,p 2, ... 'PkP Of

M-1 words. This fact will te acknowledged by writing d = pp 2 ... pk,

where plP2. P. is the concatenation of the individual pages. Note

that by representing d in this fashion a time structure has been placed on

the pages by the corresponding indices. Page p1 is processed first, page

P2 is processed second, and so forth. This is the type of time structure

and page-wise orientation of data that is present in the real situations

which are of interest. In the sequel these facts will be kept in mind

by writing, with some slight abuse of notation, f(d) = f (PiP2 .. Pk), where

the pi's all have the same number of words.

Just as a time structure exists on the input so does one exist on the

output. In terms of Figure 5, a page, pl, of input is read, and an output

Y, is produced; a page p2 is read and y 2 is produced, etc. When all of

the input, p, ...Pk' has been produced, then the output tape will

contain Y"... Yk The time structure present here must also be reflected

in the mapping f. This will be accomplished by constraining f to have

the following characteristics.

f(Pl) = Y, fg(yl) < M

Sf(plP2) =yl2 = f(p)y 2  9g (y2) <_ M

f(pl...Pk) = Y1...yk = f(Pl... Pkl)yk Rg(yk) < M
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Swhere Ig(y) is the length of yi, i.e., the number of words 4 output. The

Slength constraint reflects the fact that the m em ory has M w ords, and the

output is contained in these words when the computations are finished.

By introducing this time structure on d and on f(d) as shown above,

f has been constrained to be a causal mapping, i.e., the output yly2... Yi

is depedent only uonP " In addition, the sequential output

behavior expected of the mnodel in Figure 5 has been captured. This

gairantees that an implementation for f exists which does not require any

reloading of data.

The above restriction guarantees that f is a causal mapping and

does not require more than M words out at a time. This means that a

state-oriented procedure for realizing f can be derived I, although an

infinite number of states may be required. To illustrate this, first

define the mapping z ("right end" mapping), rj: ) - P, such that

rtB) = Ui (2)(rk (f(pl.,..PkB)=l If ... pk) U) = U(2

where U, Be D and k = 0,1,2,3,...

With the aid of the mapping ri, the partition i•f of is defined as

follows
(pl" ...pi) (Pl "ps) r! rf (p," ... piB) = r's f (PI'".Ps B)

for all B in

'This is a classic problem in automata theory. See, for example,
[ 8] , page 344.
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This partition is te basis of forming the Nerode machine j 8] in

classical sequential mach-' theory, and it is well known that the number

of states required by the Nerode machine which realizes f is equal to

the number of equivalence classes (blocks) in ir. In other words, if the

partition f has R blocks thei the Nerode machine which realizes f has
'If

R states.

Now recall thaE the machine in Figure 6 was constrained to hold

the state of the computation in a single n-bit word, i.e., only P states

are allowed. It is clear, therefore, that the type of functions, f. that

are of interest are those which can be realized by a 2f state Nerode

machine. Alternatively, the partition vf of must have no more than

?' equivalence classes, or blocks. This constraint along with the

causality and length constraints of equations (1) are sufficient to allow

the machine of Figure 5, to compute f. Figure 6 gives some insight

to the behavior of this machine as a function of time. At time 1 the

page p1 is read into the machine and the output is f(pl) = yl. At time

2 the input is p 2 and the output is y 2. On the output tape is the

sequence y y 2 = f(plp2) as it should be. Similarly, at time 3, P3 is the

input, and y3 is the output. T.he output tape then contains yly2y3 = f(plP2P3 ).

This example illustrates only the output behavior of the machine and

not the state behavior. However, it is sufficient to allow consideration

of the following situation. Suppose at time 1 the machine reads p1 from

the input tape and writes y1 on the output tape. At time 2 the input is



29

UUI

2n

II , P

Liu eIeoia e~ikOf1f,1



30

SP2 and, an the basis uf this new input, the machine decides that the

output tape should read y , not yjy2. The machine has "c&anged its

m INd, so to speak, and decided that y1is not to be part of the output.

The output tape moves in one. direction only, so the previous output,,

yI, cannot be erased. The only solution is to put out some special

symbol, e, which means "disregard previous ouiput", followed by y 2 0

This sibiation is depicted in Figure 7. This type of behavior by the

machine will be shovua to be very useful. Unfortunately, the constraints

placed on f, above, are too restrictive to allow such behavior since,

in Figure 7, f(pIp2 ) = Y2 / i(P)Y2". Therefore, the constraints will be

altered slightly as follows. The function to be constrained will be denoted

as g (g: t --- )) to avoid confusion with f, akive. Since the constraint

on the behavior of g is important below, it will be formalized in a

definition.

Definition A function g is behavior-iiuy suitable or b-suitable if

g(Pl) = Ylg g(Yl ) < M

fg(Pl)Y2 fg(y2) < v:

g(Pl P2) = otherwise -g(3)
1 g(yP) < M

Jt 2

°"g(Pl'" Pk-1) Yk fg(yk) <_ M

g(Pl" .. Pk) otherwise

Ykg(Y) -< M
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This constraint is satisfied for any function, g, for which

!YI,--.Yk

or

or

Yk

Clearly, f, from above, satisfies this constraint. However, the behavior

illustrated in Figu4e 8 is also acceptable now. For instance, if

g(pl""" Pk) = Yk, then at time k the machine merely puts eyk on the

output tape. This recall, means to disregard all output in the past,

L.e., the desired result is the output generated after the symbol e,

namely Yk"

Given this new, weaker constraint it is still necessary to impose

the cardinality constraint on the partition of g. k new "right end"

operator rk must be defined, however, because of new constraint

above. Therefore, define rk: --- as follows

S u if g (Pl"" kB = gp...pk u

rk(g(pl... pkB)) = otherwise (4)

u' if g(Pl...p k B) = ul

Now the partition 7T can be defined similarly to 7rf, using rk rather

than r'
k"

Pl " P I .PI" 4 ---> rkg(Pl" '..PkB) = rsg( ... Ps'B)

VBe
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as with lf, the number of blocks in a g must be no greater than 2?. This

guarantees that a realization of g exists which has a suitable number of
.1

states. This is formalized as follows.

Definition A function, g, is state suitable or s-suitable
if the cardinality of 7T is no greater than 2n.

g

It is worthwhile here to mention the dependence of the constraints

of g on M, the associative memory size, and on n, the word length.

It is clear that functions exist which will satisfy the constraints for

some particular values of M, n but not for others. For instance, the

partition of D depends on M but not on n. However, the cardinality

constraint on the partition is a function of n. Therefore, a great

enough reduction in n can make almost any function unsatisfactory.

Two of the three physical constraints discussed in the previous

section have now been formalized as constraints on mappings. The

third constraint, which directly involves the execution time of an

implementation of some operation, will now be treated as follows. It

was stated earlier that each of the five basic associative operations

had an implementation such that t(i 1 Therefore,
am cm

this fact will be used as an additional constraint on g. This is formalized

by the following definition.

Definition An implementation of g, , is t-suitable if

<-c m
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where P is some finite constant, and M is the size of the associative

memory in words. This merely says that, as the page size increases,

the execution time for the implementation to grows at least a powergam

of M more slowly than does the conventional memory implementation.

4.4 Definition of the Minimum Suitable Class

From the results in the previous section the Minimum Suitable

Class can now be defined. Recall that this class is to contain those

operations which are best suited to Frantional-Size Associative

Memories.

Definition 4, function, g, is a member of the Minimum
Suitable Class if

1. g is b-suitable

2. g is s-suitable

3. There exists 'an implementation of g, g such that f) is

t-suitable.

As an exercise it will now be demonstrated that the operations for

MAX, and LESS THAN met these conditions. First, consider the

operation for LESS THAN, denoted as "it". The state at any given

time is arbitrary, since no information about past data is required to

process future data. Therefore, it is trivially s-svitable since the

state need never be changed. In terms of behavio~r it can be represented as

S(pl... Pk) t (P)tP)k
• = tt(PI...Pk-1) Yk
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Tls Rit -sb• taie and in Appendix B an implementation t is

vmm d which demonstrates It to be t-suitable. Therefore, as was

airady ksowm, ft is a member o the Minimum Suitable Class.

Now cmuider the operation for MAX, denoted "max". For this

Siperatiim a state value is required. In particular, to process future

dýaa correctly it is necessary to know the maximum value encountered

f in data already processed. This value may be called the state of the

coitatim. Since this value is obtained as data it is clear that it will

jalwa%,s fit bt• one word of memory., Thus, no more than 21 possible

states exist. Thus, mac is s-suitable. To show that max is b-suitable

comnider the following.

max - max (max()l.Pkl)P)

Here the need for the special symbol "e" for the machine can be seen

and, consequently, the need for the mapping g rather than f. The past

output, max(pl...Pk1l (which is also the state of the computation),

becomes incorrect whenever a larger value is found on 1k and, even if

no !arger value is found, a redundant value would be placed on the output

tape. Therefore, when a page is read in, say pkt the output s

e(max(max(p 1... Pk_1)Pk)). Since this value is always a sing.a word

the length constraint is satisfied and, thus, max is b-suitable. Again,

Appendix B contains an implementation max which shows that max is

t-suitable. Therefore, all three conditions of membership for the

Minimum Suitable Class of Operations have been met.
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5.0 Example Members of the Minimum Suitable Class

In this section two commonly used operations are considered. It

is shown that these operations are members of the Minimum Suitable

Class of Operations.

5.1 Example One (Identification)

The first operation which will be considered is known by various

names, such as identification, classification, grouping, etc. The

specific operation of concern for this example is the following. There

are g group specifications (Figure 8). Each specification consists of

a range of values for each of n parameters. Each datum in the data

base has n + 1 fields. The first n fields contain parameter values,

and the n + 1st field is used to hold a code word which designates to

which group the datum belongs. A datum is said to belong to a particular

group of the value of each of its n parameters falls within the range

of values allowed for that parameter by that group. For example, the

datum shown in Figure 9 can be put into group 2 since each parameter

value falls within the range specified for that parameter for group 2.

It will now be demonstrated that identification is a member of the

Minimum Suitable Class of Operations. The operation will be devoted

by "ident. ". Note that the only result of applying ident is to place

the proper code word in the n + Ist field of each data word. This

is done on the basis of the values of the fields of that datum, only.
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Thus, the operation may be written Ps

@n~t (p1.. o pk) - Ident -pl. k-1) ident(jk)

The length constraint for behavioral suitabiLity is satisfied since the

same data goes out as was read in, except for the code word. Thus,

ident is b-suitable. Also, as stated above the code word for each

datum depends only on the value of the fields of that datum, so no

information about data previously processed is required. Therefore,

no state information is kept and the operation is s-suitable.

To show that ident is t-suitable requires deeper consideration

of the operation. This involves some estimate off the execution time

required by ident on both associative and conventional memories,

as a function of M. Several assumptions will be made in the irocess

of obtaining this estimate. The general attitude taken is to make

assumptions which favor the conventional memury over the associative

memory., The estimate for the conventional memory will be obtained

first.

5.1.1 Conventional 'Memory Execution Time Estimate

For the conventional memory time estimate it will be assumed that

* the data structures of Figure 10 are being used. The data to be identified

are stored in a simple linear sequence of words, as are the group

* definitions. The group definitions, however, are assumed to be ordered

on the value of a i. This will allow some modified form of a binary
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search to be performed in order to find those group definitions which

include the field 1 value of a given datum.

The procedure will be to first find those definitions whose range

for field 1 values (a•.,bf) includes the value of field 1 for that datum, f,

under consideration. The next n-i field values of I are then compared to the

appropriate ranges of these selected definitions. That group specification

for which all ranges include the corresponding field values of I is

defined to be the group to which I belongs. The code for this group is

placed in field n + I of 1. The process is then repeated for each of the

other data in the data base.

Since the time to execute an algorithm such as that just discussed

is dependent upon the speed of the particular machine used, an indicator

of this time will be used, instead. The indicator is the number of

compare instructions executed. Two compare instructions are needed

for each step in the binary search and two compares are needed to check

each of the n-i fields remaining. It is well known that the binary search

will require Rog 2g probes to search an ordered list of g elements. Thus,

2 fog2g compares are required for the first parameter.

Since it is not known, in general, how many groups may be selected

by this binary search, it is conservatively assumed that only one group

is selected. Thus, only 2(n- 1) additional compares will be required

(to check the remaining n-1 fields). The total number of comparisons

is, therefore, [ 2 Rog 2g + 2(n- 1)] • M, It is clear that, for M large with

respect to n and g, the number of cor.iparisons is proportional to M.
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5.1.2 Time Estimate For Processing One Page of Data in Fractional-

Size Associative Memory

An associative memory such as that described in Section 2.3 can

identify each datum in a page (m-1 words) of memory as follows.

First, perform a GREATER THAN and a LESS THAN operation using

as comparands the all, and b,, values for group 1. This will find all

those data whose first parameter value lies within the range of values

acceptable by group 1. These data will be indicated by the corresponding

bits remaining "11s in the response register (See Section 2.3) while

other data have their associated bits set to a zero. Now these same

two instructions are repeated, but values a 2' b1 2 are used as comparaxds

this time. This step eliminates those data whose first parameter values

are acceptable but whose second parameter values are not. The associated

response register bits for these data are set to zero.

This prccess is repeated for the remaining parameter value ranges

for group 1. When this process has been completed, those data for which

the associated response registers bit is a "1" are marked as members

of group 1. The entire process is then repeated for group 2, group 3,

... ,group g.

This process is clearly independent of M. The execution time is

proportional to the number of GRE kTER THAN and LESS TH k.N instructions

which are executed. In this example 2ng such instructions are required.

1Assume the response register has been set to all "l's" before
processing begins.

I
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Therefore, the execution time is proportional to ug, which is a fixed

constant for a given problem.

5.1.3 Comparison 4 Time Estimates

The time estimates above indicate hat the execution time, Te,

for identification is of the form Te1 = K1M for conventional memory

and of the form Te = K2 for associative memroy, where K1 ,K2 are

constants with respect to M. Thus, it can now Le stated that

identification is t-suitable, since

K2  Te1
Te 2 Te

Te2 M M 1

as required by the definition of time suitability. I It has now been shown

that the identification operation meets the three requirements for

membership in the Minimum Suitable Class of Operations.

5.2 Example Two - (Index Table Look-up)

The situation of interest for this example is depicted in Figure 11.

There is a large data base which contains information to be retrieved

upon request. This retrieval is accomplished with the aid of the

index table and the associative memory. The index table is a directury,

each entry of which is a sequence of descriptors the last one of which

is an address. The address is the location in the data base of the

information described by the descriptors. A. retrieval request is

Clearly, this satisfies the definition of t-suitability since < -
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presented as a list of descriptors. Using the associative memory this

list of descriptors is compared against those in the directory. When

a match is found, the address is used to retrieve the desired information.

This operation of mapplg the index table and list of descriptors to an

address will be denoted by 'I " in the seqrel. This operation is extremely
x

important because of the almost universal need for data retrieval of the

general type described above. It will now be shown that Ix is a member

of the Minimum Suitable Class and, therefore, is suitable to a Fractional-

Size Associative Memory.

Clearly, the index table, together with the input descriptors, is

an element of the set 0- described earlier. 4lso, the output descriptor

is an element of 0. Therefore, I is an operator on D, Ix: I--- 1o

In the discussion above it was stated that the process of indexing

is basically a comparison between the list of input descriptors and the

individual entries in the index table. This comparison between the input

list and any given entry is independent of any other entries. From this,

it should be clear that any collection of the entries in the index table

may be processed in an associative memory independently of the

remainder of the table. This is signified as folluws.

Ix(Pl,...IPk) = 1x (Pl) I (P2)...(Pk)

The operation I is, therefore, b-suitable. I is also s-suitable since,

as in the previous example, no information need be kept about data

previously processed,
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It can also be shown in a manner similar to that of the previous
example that I is t-suitable. The details will not be presented here

x

since they would add little information and are lengthy. The operation

SI has now been shown to be a member of the Minimum Suitable Class.

6.0 Summary

In this report the problem of determining which data processing

operations can be efficiently performed on Fractional-Size Associative

Memories has been studied. The study proceeded in the following

manner.

It was argued that certain operations are better suited to

associative memories than are other operations. Therefore, a decision

was made to determine which operations were best suited and, then,

study the common characteristics of those operations. It was then argued

that the associative search operations, i, e., those operations implemented

by the associative search instructions, were the most suitable operations

for Fractional-Size Associative Memories. Five operations which

encompass the associative search capabilities of alnost all associative

memories were then chosen for detailed study. The results of this

study was a characterization of these operations in functional terms.

This characterization was used to define the Minimum Suitable Class

of Operations. This class of operations is claimed to contain those

operations which are most suitable for implementation on a Fractional-

Size Associative Memory.
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APPENDIX A

Details For Motivational Example

In this appendix programs are exhibited for an associative memory

and a conventional memory which implement the operation discussed

in the example of Section 1.1. Various assumptions have been made

to simplify each of these programs. These will be introduced as they

are needed. Recall, the goal sought in the example is to determine

all those numbers in some data base which lie within a given range

of values, i.e. , those numbers which are greater than some number.

A,, and less than some number, A2. First the program for the

conventional memory will be presented.

k. 1 Conventional Memcry Program

For the conventional memory the following type of algorithm will

be represented by the program below. The values A1 and k 2 will be

held in two registers. The programs starts by testing the first data

word to determine if it is greater than A1. Then, it is tested to

determine if it is less than A If both conditions are satisfied this

datum is marked or moved to a special place. Then this procedure

is repeated on the remaining data words.

After each instruction in the program a number is given to indicate

the estimated number of machine cycles which would be needed to

implement that instruction. These estimates are derived from

characteristics of the IBM 360/65 [ 8].

48
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Compare %r" d 7

brancb decision 5
move or mark data 17 (only if data meets both tests)

brch to start over 6

Smber Gi cycles required to process N data words is, therefore,

T =30N + 17CN,

whre C is the munber co words marked. Now, to cotain -he results

cithexampleofSecticn1.1ietN= 10,000, mdC = .1N. Thus,

TN =32 x 104 cycles.

k.2 socaieMemory Progrmm

The program for the associative memory is almost identical to the

program for the conventional memory except that the associative memory

cam perform many comparisons simultaneously. Therefore, this program

is somewhat less complex than the one for the conventional memory.

1

Set Response Register 2 set to all l's

load comparand 6 load 41

GREATER THAN 42 comparison

Load comparand 6 load 42

LESS THAN 42 comparison

move accepted words 17/word

1 The cycle estimates for the associative search operations were taken
from [1. The estimates are based on a 32 bit word. Other cycle times
were estimated to be comparable with those for the conventional memory.
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The number of cycleai required to proce-s one memory load (a page)

of data is 98 + 17/correct word. For the data base this is

TN =98K + 17C

N2

where K is the number of pages of data in the data babs, and C is the

number of words accepted by the program. Now, let C = .IN and

N = 10,000, as for the conventional memory, and obtain

; 104
T = 98K + 1.7x cycles.

N2
This is Vhe equation plotted in Figure 2 of Section 1.1.

4.3 Memory Cost Estimates

Individual cost estimates were not derived for each tjpe of memory.

Instead, an estimate was made for the relative costs of t!ie two types

of memories. This, of course, is heavily influenced by the type of

technology employed. For the example of Section 1.1 the a cost ratio

of 10:1 (associative: conventional) [9] was assumed.

4



4aPPENDIX B

Implementations for the Basic Associative Operations.

In this appendix implementations for the basic associative search

operations of Section 2.3 are exhibited. These implementationg have

the characteristics discussed in Section 4 in that they satisfy the following

two conditions (hereafter referred to as conditions 1 and 2).

1. When the data base is processed a part (page) at a time, then

no more than one word of data may be retained from previous

processing when a new page of data is transferred into the

memory. This is the one word "state" discussed in Section 4.

2. The execution time required by these implementations, when

applied to one page of data, is proportional to I (t( )),cm

for large M, when t(P. ) is the execution time required
fcm,

for the fastest implementation of that ope mtioa on a conventional

memory.

The implemen'ations for an associative memory are presented in the

form of algorithms. These are analyzed to obtain some insight concerning

the execution time of these algorithms. Then estimates are obtained for

executing the operation using a conventional memory, and the two

estimates are compared.

B. 1 lgorithms and Time Estimates

First the algorithm for the "max" operation will be presented.

0. Preset the "state" of the computation.

51
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1. Load a new page of data into the associative memory.

2. Set response register to all l's.

3. Execute the MAX instruction.

4. Read new page into memory, saving only the state. In this

case the state is that word containing the maximum value from

the previous page.

5. Repeat steps 2-5 until the data base has been completely

processed.

This algorithm demonstrates that a one word "state" description is

sufficient to contain the necessary information from one page of data

to the next. Thus, condition 1 is satisfied. It also demonstrates that

the execution time1, for one page of data, is a constant with :espezi

to the size of the memory.

Now consider how this operation would be implemented in a

conventional memory. The important aspect to be considered is that no

more than two words may take part in a COMPARE operation in the

typical conventional memory type of computer. Thus, the usual method

employed to find the maximum value of a list of words is to compare

two words at a time and keep the one larger in value to compare against

the third word, and so forth. This requires M-1 comparisons to be

performed. Thus, the execution time is proportional to M-1.

1Recall that the execution time does not include the time required
to load the memory.
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From the discussion above it follows that the ratio of the execution

times for implementations of the associative memories and the conventional

memories is

t v,~ta) K,
max a ___ where K1 is a constant• ~t (•mxc)M-I

or
, *tc' K, t

max am max cm

Condition 2 is, therefore, satisfied.

The discussion for the "min" operation follows the same path as

given above for max. For this reason it will not be presented here.

The "greater than", or "gt" operation will be discussed next.

GRE ATER THAN, LESS THAN, EXACT MATCH

The algorithm for implementing gt on a Fractional-Size Associative

Memory is the following.

1. Load a new page of data into the memory.

2. Set Response register to all l's.

3. Execute the GRE kTER THAN instruction.

4. Move all data for which the corresponding bit in the response

register is a 1 to some special area.

5. Repeat steps 1-4 until data base has been processed.

Two points are immediately evident for this algorithm. First,

no information is retained from one page of data to the next, i.e., no

state information is required. Thus, condition 1 is satisfied. Second,
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the execution time for processing one page of data is independent of

page size, as was the case for the max operation.

V Now consider how this operation would be implemented using a

conventional memory. The value used as a comparand in the associative

memory would be compL -edto each of the M data. Those data whose

value is larger than this comparand value would be marked or moved to

a special location.

This discussion shows that M comparisons would be required

and, therefore, the execution time is proportional to M. The ratio of

execution time for the associative memory implementation is the following.

t (4?gtt ) K
an-, 2

t cm

cm

or
tg-K 2

2 t (Pgt
t (7r gtam = -f gtcm

am cm

where K is some constant. Thus, condition 2 is satisfied. The
2

discussions for the operations, "exact match," and "less than" are

completely similar to that for gt. For this reason they will not be

repeated here.
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